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We study the effect of quenched impurities in a driven diffusive lattice gas by means of numerical
Monte Carlo simulations. The particles are driven by an external field. As the temperature is varied the
system is found to undergo a second-order kinetic phase transition to an ordered strip-geometry state.
In the ferromagnetic case an anisotropic finite-size-scaling analysis shows that the critical temperature
decreases linearly with increasing impurity concentration. We determine the power spectrum of the
current correlations at the determined critical temperatures and we also determine the conductivity as a
function of the impurity concentration. In the antiferromagnetic case it follows from simulations and a
finite-size-scaling analysis that the critical temperature is a decreasing function of impurity concentra-
tion and that the model is described by the Ising critical exponents.
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I. INTRODUCTION

There is a current interest in phase transitions and crit-
ical phenomena of statistical-mechanical model systems
driven in steady states far from thermodynamic equilibri-
um. In contrast to the situation for equilibrium transi-
tions and critical phenomena where well-defined theoreti-
cal constructs are available, the present understanding of
kinetic phase transitions is limited and mostly based on
computer-simulation studies of simple microscopic mod-
els. One of the important questions to address is whether
the concept of universality known from -equilibrium sys-
tems also applies to nonequilibrium systems.

A particular microscopic model that has been studied
extensively is the driven two-dimensional lattice-gas mod-
el with diffusive dynamics subject to an external uniform
field [1,2]. Computer simulations have shown that this
system undergoes a kinetic phase transition whose criti-
cal temperature depends on the field strength. The char-
acter of the phase transition has also been elucidated us-
ing mean-field theories and renormalization-group (RG)
calculations [2]. In the low-temperature phase the driven
diffusive system (DDS) with ferromagnetic (attractive) in-
teractions settles into a stationary state with the particles
forming a “strip” parallel to the external field. As the
temperature is raised this strip breaks up at a second-
order phase transition. From a dynamic renor-
malization-group calculation based on a Langevin-
equation approach, the critical exponents characterizing
the transition have been determined, and one finds that
the exponents differ from the Ising equilibrium values.
Another interesting fact is the existence of long-range
correlations even away from the critical point [3,4]. An
anisotropic finite-size-scaling analysis also gave evidence
that the field-theoretical and simulation models belong to
the same universality class [5]. On the other hand, with
antiferromagnetic (repulsive) interactions the driven sys-
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tem has been shown to be in the equilibrium Ising univer-
sality class [6]. The influence of randomness in the DDS
system has been investigated in a system with an imposed
random electric field with zero mean and short-range
correlations in space and time. In the case of ferromag-
netic interactions this random driven system was found
to be in yet another universality class [7]. Furthermore,
recently a noninteracting driven lattice gas with a
quenched noise distribution has been investigated using
field-theoretic methods [8].

For equilibrium systems the effect of randomness has
been studied extensively [9]. The Harris criterion [10] is
useful in order to determine whether randomness will
give rise to a new universality class with new critical ex-
ponents: For a positive specific-heat exponent a random-
ness leads to a new universality class and new critical be-
havior, while a negative specific-heat exponent implies
unaltered critical exponents, that is, no change of univer-
sality class. The two-dimensional pure Ising system has
a=0, corresponding to the marginal case, and the intro-
duction of quenched impurities does not seem to lead to
new critical behavior [11]. On the other hand, in three
dimensions a=0.11 and new critical behavior is found in
accordance with the Harris criterion (see, e.g., Ref. [11]).
For small concentrations of impurities one finds that T,
decreases linearly, becoming identically zero at the per-
colation point p. [9]. Beyond the percolation point a per-
colating cluster of magnetic sites does not exist, long-
range order is therefore not possible, and no phase transi-
tion at finite temperature can take place.

In the present paper we undertake a study of the
influence of quenched impurities in the driven diffusive
system, in the following denoted by DDSI. Whether the
model with quenched noise studied in Ref. [8] describes
the DDSI system in the high-temperature phase is un-
clear, since the quenched noise is different from our
quenched impurities. By means of an anisotropic finite-
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size-scaling analysis where we use the exact critical ex-
ponents for the DDS system, we determine the critical
temperature for low concentrations of impurities. We
find that the critical temperature decreases linearly with
increasing impurity concentration. Power spectra of the
current correlations at the determined critical tempera-
tures are also simulated. The exponent in the power
spectra takes the value ¢ =1, which is in agreement with
the value for the exponent in the DDS system. The con-
ductivity as a function of the impurity concentration is
determined by means of simulations. Results for the
DDSI system with antiferromagnetic interactions have
been analyzed by means of an isotropic finite-size-scaling
ansatz using Ising exponents. From this analysis the crit-
ical temperature was found to decrease with increasing
impurity concentration.

In Sec. II we define our model and present simulation
results. We touch upon the relation to percolation
effects. In Sec. III a finite-size-scaling ansatz is formulat-
ed. This ansatz is used in the data analysis in Sec. IV.
The current correlations and the dependence of the
current on the impurity concentration are analyzed in
Sec. V. Section VI contains a simulation study of the an-
tiferromagnet and we summarize and conclude in Sec.
VIIL

II. MODEL

The local Hamiltonian describing the DDS lattice-gas
model is given by

H=—4J 3 nn; . (1
(ij)

The site variable n; =1 for an occupied site and n; =0 for
an empty site, and the sum is over all nearest-neighbor
pairs of sites on a d-dimensional lattice. The interaction
between the particles can be either ferromagnetic (J=1)
or antiferromagnetic (J= —1). We use units such that
the Onsager critical temperature for the two-dimensional
Ising model is T, =2.2692 and temperatures will be given
in units of T, throughout the paper. In the simulations
the magnetization is kept constant equal to zero corre-
sponding to half coverage of the lattice. The driven
diffusive system is simulated using a particle-conserving
Monte Carlo algorithm with the Kawasaki exchange
probabilities

p=min{l, exp[ —B(AH +¢€E)]} . (2)

Choosing e=—1,0,+1 for jumps in the direction of,
transverse to, and in the opposite direction of E, respec-
tively, the effect of the external field E is to enhance the
probability of a particle jumping along the field while
transitions opposite to the field direction are highly
suppressed. Jumps transverse to E are not affected by the
external electric field.

Quenched impurities are now randomly distributed on
the lattice sites. In the Kawasaki updating dynamics (2)
we use the Hamiltonian

H=—4J 3 €;€;n;n;

I 3)
{i,j)
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where €; are independent random variables assuming the
values O or 1: ¢€;=0 corresponds to an impurity site,
while €; =1 corresponds to a ‘““magnetic” site that can be
either empty or occupied by a particle. We denote by
p=1(¢;) the concentration of magnetic sites and ¢ =1—p
the concentration of the impurities.

During the simulations the quenched impurities are
immobile and their effect is simply to produce a distribu-
tion of vacancies in the lattice. This implies that as the
impurity concentration is increased above the value
c¢.=1—p,., where p, is the percolation point for a site-
diluted square lattice, a percolating cluster of magnetic
sites cannot exist. Long-range order will therefore be ab-
sent for all finite temperatures at these impurity concen-
trations and we expect the critical temperature to vanish.

In the simulations we use a two-dimensional lattice
with imposed periodic boundary conditions. The size of
the lattice is L; X L,, where L is the length parallel to
the external field and L, is the length perpendicular to
the field. In most of the simulations we assume the elec-
tric field to be infinite. This implies that the particles
never make transitions opposite to the field direction,
whereas jumps in the direction of the field are always per-
formed except when the nearest-neighbor site is occupied
or is an impurity site. Because of the periodic boundary
conditions the system now settles into a stationary
current-carrying state. To reach the steady state the sys-
tem is simulated for typically 10-20000 Monte Carlo
steps (MCS). We find that the ferromagnetic DDSI sys-
tem similar to the pure DDS case again settles into a sta-
tionary one-strip state with the strip parallel to the elec-
tric field. However, owing to the impurities the interface
between the particle-rich and particle-poor regions is less
well defined compared to the pure driven system. In the
stationary state we have determined the order parameter,
the current, the local energy, and the cumulant (see
below) for different impurity concentrations. Plotting the
order parameter versus temperature, a first estimate of
the critical temperature can be obtained. Further simula-
tions consisting of up to one million MCS were then per-
formed for temperatures near the phase-transition point.
Moreover, the data were averaged over 10-20 different
impurity configurations.

In an Ising system with nonconserved magnetization,
one can use the total magnetization as the order parame-
ter corresponding to the kK =0 component of the Fourier
transform of the local magnetization. The corresponding
quantity in a system with conserved magnetization is ap-
propriately defined as

m=((|¥ >+ [)'"?), )
where
W(l)z————v——*za(x)exp l“zl‘x (1) (5)
! 2(1—¢)L L, < Ly, "

are the Fourier transforms for the lowest k values [12].
o(x) is the local magnetization and is related to the par-
ticle density through o(x)=2n(x)—1. The prefactor in
Eq. (5) ensures that m =1 at zero temperature for a per-
fectly ordered configuration consisting of a single strip
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pointing in an arbitrary direction. Since the strip in the
DDSI system is never perfectly parallel to the external
field, we have chosen the above order parameter rather
than m’=(|¥,|) (which measures the transverse order);
however, the results do not depend on the specific choice.
The advantage of m (and m') compared to the order pa-
rameter p (designed to measure the one-strip ordered
configuration) used in the first studies of the DDS system
[2] is the smaller finite-size high-temperature tail of m:
For high temperatures m ~1/V'V, whereas p~1/\/z,
where V=Lan“l denotes the volume of the system (see
Ref. [5]).
We also define the cumulant [5]

_ wly ©
T Py, P

as a means to locate the critical temperature. Above T,
the distribution tends to a Gaussian and from simulations
we obtain {((|W¥,|2+ I\I'”]z)z) ~3(|¥, |2+ I\I’HIZ)Z, leading
to the following limiting values for the cumulant: g—1
for T—0 and g —0 for T— oo. This has been checked in
the simulations and we find that the limiting values are
reached for temperatures slightly above the critical tem-
perature and that these temperatures increase with in-
creasing impurity concentration.

III. FINITE-SIZE-SCALING ANSATZ

The field-theoretic and simulation DDS models were
shown to be in the same universality class [S]. This con-
clusion was obtained from an anisotropic finite-size-
scaling analysis (FSS) of the simulation data. The FSS ex-
pressions used in this analysis were obtained from the
renormalization-group analysis of the DDS system.

In order to analyze our data for the DDSI system and
determine the critical temperature, we have used a finite-
size-scaling ansatz. Since there is no theoretical predic-
tion for the DDSI system, we start out from a standard
FSS ansatz and take into account the effect of impurities.
For temperatures close to the critical temperature the
correlation length is the only relevant length scale and
this implies that the magnetization only depends on the
ratio L /& (cf., e.g., Ref. [13]). Owing to the inherent an-
isotropy of the driven system caused by the external field,
two different correlation lengths appear and the finite-
size-scaling form is modified accordingly [5]. Impurities
introduce yet another length scale / ~¢ ~17d which is the
average distance between impurities. Consequently we
make the following FSS ansatz

m(T)=A ALy /&Ly /E1/€,1/E), L—o0,1—0,
)

where the correlation lengths scale as §;~¢ "I, & ~t e
and v and v, are the critical exponents. The reduced
temperature is t =(T—T,)/T,, T,=T,(c); A is a size-
dependent prefactor; and /i is a scaling function. In
terms of the reduced temperature we also have

mL(T)=ALm'(L”tV",L"tV“/S’,Itv",ltvl), where m’ is a

new scaling function related to 7 by a simple change of

variables. Here the shape factor S'=L L ;V”/V‘
=L"L f)‘, is related to the shape factor S introduced by
Leung [5] by means of $'=S?, A=wv,/v,. Introducing a

new scaling function 7, the magnetization takes the form
my(T)=A,mGL,, 81" 1t™), L—>w,t—0. (8

We now propose that a small concentration of impuri-
ties does not change the form of the scaling function as
the temperature approaches the critical point. This as-
sumption is justified by the fact that we can fit our data
with the finite-size-scaling ansatz in the form given below
in Eq. (9). For equilibrium systems such an assumption is
valid if the specific-heat exponent is positive [10]; howev-
er, for the DDS system « is not known and it is also dubi-
ous whether a generalized Harris criterion applies. For
¢ >c, we expect the phase transition to disappear since
there cannot be a percolating cluster of magnetic sites.
Close to the percolation point a crossover to percolation
exponents can take place—exactly as in the Ising model
diluted with quenched (nonmagnetic) impurities [9]—but
we have not examined such effects.

For the DDS system Leung has shown that only in the
case S'=const does the FSS analysis lead to the same
scaling form that is obtained directly from 2 dynamic
renormalization-group analysis [5]. Since analytical re-
sults for the DDSI system are not available, we attempt
to apply the methods developed for the DDS system. For
systems with a constant shape factor S’ (and S') one ob-
tains the scaling variable ¢L | ™, Letting L, — o we re-
quire that the dependence on L, disappears and that
m(T) has the behavior ¢P. This leads to an expression for
the amplitude 4; which by insertion in Eq. (8) yields the
finite-size-scaling form

my(T)~L, " WmaL,”

), Lj—o0,t—0. 9)
Here S'=L L fv”/vl is to be kept fixed in the thermo-
dynamic limit L,L,— «. The exponents for the DDS
system are known exactly [2]. In two dimensions they
are given by v,=3, v,=1, and f=1. This gives the ex-
pression mL(T)NL”_l”m(tLﬁ/3 ). Similarly for the cu-
mulant the FSS ansatz is g (T)~g(tL}") for L, — ,
t —0, since the L-dependent prefactors cancel (cf. Ref.

[5D.

IV. RESULTS

In order to test the finite-size-scaling form we have
made simulations on lattices of size L XL, =20X20,
4426, 82X 32, and 16040, corresponding to the con-
stant value S’ =0.0025. The results for the impurity con-
centrations ¢ =0.01 and ¢ =0.05 are shown in Figs. 1 and
2. Figures 1(a) and 2(a) show the obtained scaling curves
for the cumulant, while Figs. 1(b) and 2(b) show the scal-
ing curves for the order parameter. By varying 7. we ob-
tain data collapse using the estimates T,(c =0.01)=1.41
and T.(c=0.05)=1.37 with uncertainties around 0.01.
Together with the value T.(c=0.0)=1.42 obtained in
Ref. [5] we note a linear decrease of the critical tempera-
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ture as the impurity concentration is increased, following
from the leading term in an expansion of T_.(c) about
¢=0. From the scaling curves for the order parameter
one also finds that the slope for temperatures below the
critical temperature is approximately 1. This is a con-
sistency check since B was set equal to 1 in the scaling
form (9). From the finite-size tail m ~1/V'V at high
temperatures it follows that the slope should be —1 (see
Ref. [5]). The reason we cannot obtain this behavior is
probably because the temperatures- we have examined
have not been high enough. The part of the amplitude in
Eq. (9) that depends on the impurity concentration is,
from Figs. 1(b) and 2(b), seen to vary with the varying im-
purity concentration according to the behavior 1/(1—c)
following from Eq. (5). In the finite-size-scaling analysis
the critical exponents known from the DDS system were
used, suggesting that the DDSI system belongs to the
DDS universality class. (For low concentrations of im-
purities it can be difficult to determine whether the im-
purities change the critical behavior since the critical re-
gion in this case can be very small [14].)

From the local energy H the specific heat has been
determined by numerical differentiation using c(T)
=du/dT=V 'd(H)/dT. The specific-heat curves
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FIG. 1. Anisotropic finite-size-scaling plots for (a) the cumu-
lant and (b) the order parameter (in a log-log plot with base 10)
with the impurity concentration ¢ =0.01. The critical tempera-
ture is estimated to be T.(c =0.01)=1.41.
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FIG. 2. Anisotropic finite-size-scaling plots for (a) the cumu-
lant and (b) the order parameter (in a log-log plot with base 10)
with the impurity concentration ¢ =0.05. The critical tempera-
ture is estimated to be T,.(c =0.05)=1.37.

show a behavior similar to what has been observed for
the DDS system [15] showing no clear maximum around
the critical temperature. A fluctuation-dissipation
theorem (FDT) relating the energy fluctuations
S(T)=V7 T X(H?)—(H)?) and the specific heat
¢(T) does not hold in the DDS system [2]. Also in the
DDSI system a FDT theorem does not seem to hold, but
our curves are not accurate enough to draw any definite
conclusion.

V. CURRENT CORRELATIONS

In a continuum description the ferromagnetic DDS
system is described by a Langevin equation [2]

9% L v.jix,)=0,
ot

where ¢(x,t) is the coarse-grained local particle density
and j(x,t) the particle current. A random-noise term
with short-range correlations is included in the current in
order to model the effect of the fast microscopic degrees
of freedom. The allowed terms in the expression for the
current are determined from the symmetries of the DDS

system. The power spectrum of the current correlations
is given by

(10)
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S(w)= [dt{j(£)j(0))e™", (11)

where the current is j(¢)=V 'S _j(x,t). Using the con-
tinuity equation (10) we have for the Fourier transforms
ooy, =kji,, and this yields

S(w)=V"'o*limk "*G 4 (k,0) , (12)
k—0

where G, (k,®) is the Fourier transform of the magneti-
zation correlation function [16]. At the critical point
Leung used the scaling form for the two-point correlation
function for the DDS system known from the dynamic
RG analysis in order to obtain the power-law behavior

S(o)~o~%, (13)

with ¢ =1 in two dimensions [16]. This was also checked
by means of simulations and agreement between the
theoretical prediction and the simulation results was
found.

For the antiferromagnetic DDS system there is no pre-
diction for the current power spectrum at the critical
point. In this case the system is not described by a single
Langevin-type equation. The equation for the local parti-
cle density ¢ is coupled to a Langevin equation describing
the dynamics of the nonconserving order parameter (the
staggered magnetization). Owing to the symmetries of
the system at the critical point the system belongs to
model A4 in the classification of critical dynamics [2]. We
have performed simulations on the antiferromagnetic
DDS system and obtained the value ¢=1.5510.04 for
the exponent in the current power spectrum at the criti-
cal point. Compared to the ferromagnetic case rather
strong finite-size effects were observed for the antiferro-
magnetic driven diffusive system.

Using the values for the critical temperature deter-
mined from our finite-size-scaling analysis we have per-
formed simulations of the current power spectrum for the
DDSI system. The current is determined as the net num-
ber of jumps in the direction of the electric field divided
by the lattice size and the elapsed time in Monte Carlo
steps. Our results were averaged over 100 independent
runs and we found that ¢~1 fits our data over approxi-
mately one decade. In Fig. 3 we show the power spec-
trum for ¢ =0.05 simulated at the critical temperature
T.(c =0.05)=1.37 determined from our FSS analysis (cf.
Sec. IV). The conclusion is that the results are compati-
ble with our results obtained from the anisotropic FSS
analysis, indicating that the DDSI system for low impuri-
ty concentrations and the DDS system are described by
the same critical exponents.

Even away from the critical point the DDS system ex-
hibits spatial and temporal correlations that decay alge-
braically under generic conditions. In the high-
temperature phase the power spectrum of the current
correlations for the DDS system behaves as S(w)~w /3
in one dimension and has a logarithmic behavior in
two dimensions [3]. States exhibiting long-range
correlations—or generic scale invariance—is a generic
feature of spatially anisotropic Langevin equations with
conserving dynamics and conserving noise [17]. If the
noise is nonconserving, spatial anisotropy is not required
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FIG. 3. Power spectrum of the current correlations for the
DDSI system with the impurity concentration ¢ =0.05 deter-
mined at the critical temperature T.(c =0.05)=1.37. The solid
straight line denotes the function S(f)~1/f.

in order for the system to exhibit generic scale invari-
ance.

In the DDS system the current as a function of temper-
ature increases linearly and saturates in the high-
temperature disordered phase. At the critical tempera-
ture where the strip geometry breaks up, the current
curve exhibits a kink. For the driven system with impuri-
ties the kink is not well defined. In the limit of vanishing
external field the current in the driven diffusive system is
given by Ohm’s law j =0 E, where o is the electric con-
ductivity. Hence, measuring the current yields immedi-
ately the conductivity. Katz, Lebowitz, and Spohn have
shown [1] that the zero-field conductivity is related to the
bulk diffusion coefficient D(p) by the Einstein relation
o=x(p)D(p), where the equilibrium compressibility at
particle density p is given by x(p)=3,({n;ny) —p?).

For the diluted system we have Ohm’s law j(p)
=g (p)E, where the current and the conductivity depend
on the fraction of magnetic sites p(=1—c¢). The linear
form holds for small (E <5) fields. In Fig. 4 the conduc-
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0.001

0.5

FIG. 4. Zero-field conductivity as a function of the impurity
concentration in the high-temperature phase.
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tivity (or by Ohm’s law, the current) is shown at high
temperature. Near the percolation point p, the conduc-
tivity of a lattice [where the magnetic sites are conduct-
ing and the “diluted” (removed) sites are insulating] is ex-
pected to show the power-law behavior

olp)~(p—p.), (14)

characterized by the exponent ¢ (see, e.g., Ref. [18]).
From experiments one has obtained the value 1.29+0.06
in two dimensions and values close to this are also found
in simulations [18]. Simulations of the conductivity o(p)
in the DDSI system show that the curve is convex (cf.
Fig. 4). From a log-log plot of the conductivity near the
percolation point the exponent ¢ in Eq. (14) is estimated
to be approximately 1.25, consistent with the values quot-
ed in the literature.

VI. ANTIFERROMAGNET

The antiferromagnetic DDS system orders in a
“checkerboard”-like configuration with particles and
holes occupying the two sublattices [6]. Therefore, the
appropriate order parameter for this system is the stag-
gered magnetization

msziV<2<—1)i(zni—1)>, (15)

where the sum is over the whole lattice. The critical tem-
perature decreases as the electric field is increased and be-
comes zero for fields larger than a critical field strength
E.. For a perfectly ordered configuration E,=12. This
follows from Eq. (2) since for E > 12 the electric field can
always “pull” the particles out of their stable positions
and no ordering is established. However, the ordering
will never be perfect and consequently the critical E field
is E,=8 as shown in Ref. [6]. Furthermore, dynamic
renormalization-group arguments and a FSS analysis
have shown that the antiferromagnetic DDS system be-
longs to the Ising universality class [6]. From simula-
tions of the order-parameter correlations at the critical
point the value z=2.2+0.1 for the dynamic critical ex-
ponent was obtained [19]. This is in accordance with the
value z=2.16 for the standard Ising model with noncon-
served magnetization, which belongs to model 4 in criti-
cal dynamics [20].

We have simulated the antiferromagnetic DDSI system
for low impurity concentrations. The stationary state is
again—at low temperatures and small external fields—a
checkerboard-like configuration with the particles and
holes occupying the two sublattices. In the two-
dimensional site-disordered Ising model there is no elec-
tric field that keeps ‘“pushing” the particles. But in the
DDSI system due to the electric field the particles can get
“trapped” —behind small groups of impurities—and it
may take a long time before the particles escape from
these traps. Owing to these long-lived metastable states it
requires long simulations in order to determine, for exam-
ple, the order parameter. In the DDSI system the order-
ing will never be perfect because of the impurities. Fur-
thermore, as the impurity concentration is increased, E.
will decrease. At the percolation point E, will probably

approach the value 4, corresponding to a one-
dimensional system, since the percolating cluster can be
thought of as ‘“blobs” connected by essentially one-
dimensional links (cf. Ref. [9]).

Both the two-dimensional pure and disordered Ising
models and the antiferromagnetic DDS system belong to
the Ising universality class. In order to test whether the
driven antiferromagnet with impurities also belongs to
the Ising class, we have performed a standard finite-size-
scaling analysis of our data using the scaling form

mg(L, T)=L " #"m@tL'"), (16)

as was done for the antiferromagnetic DDS system in Ref
[6]. For the antiferromagnetic DDS and DDSI system
the E field does not couple to the order parameter (the
staggered magnetization) but couples to the local magne-
tization [2]. This implies that the electric field does not
induce any kind of anisotropy and therefore an isotropic
FSS analysis was performed.

From our simulation results for the antiferromagnetic
DDSI system at low impurity concentration we find from
the FSS analysis that the system is described by the Ising
exponents and that the critical temperature decreases
with increasing impurity concentration. With the param-

eter values E=2 and ¢=0.01 we obtained
T.(c=0.01)=0.78+0.01 which—as anticipated—is
lower than the critical temperature T,.(c=0.0)

=(.82+0.01 for the pure driven antiferromagnetic sys-
tem [the value for the critical temperature for the pure
system is consistent with the result obtained in Ref. [6],
which states that T,(E=2)=0.81]. As the impurity
concentration is increased towards the percolation point
the critical temperature is expected to vanish. We also
examined the energy fluctuations ¢(7') and found that
they show a maximum at approximately the same tem-
perature as the specific-heat ¢(7T'). We therefore believe
that the antiferromagnetic DDSI system is in the same
universality class as the antiferromagnetic DDS system
and the Ising model.

VII. CONCLUSIONS

In the present paper we have studied the effect of
quenched impurities in the driven diffusive system. The
ferromagnetic driven system with impurities was found to
undergo a second-order kinetic phase transition to an or-
dered strip-geometry state. From an anisotropic finite-
size-scaling analysis we found that small concentrations
of impurities did not lead to new critical behavior and
that the phase transition in the DDSI system is described
by the critical exponents characterizing the DDS system.
The critical temperature as a function of the impurity
concentration decreases linearly. Results for the power
spectrum of the current correlations determined at the
critical points were also in agreement with the results for
the DDS system. The parameters in a Langevin equation
describing the DDSI system depend on the impurity dis-
tribution. Integrating over this distribution will lead to
an effective equation with the translational symmetry of
the driven diffusive system, and the equation is expected
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to be related to the Langevin equation describing the
DDS system.

The conductivity (or current) as a function of the im-
purity concentration was also studied. Near the percola-
tion point the conductivity curve shows a power-law be-
havior with the exponent ¢ =~1.25 in accordance with re-
sults quoted in the literature.

The antiferromagnetic driven system with impurities
orders in a checkerboard-like configuration with particles
and holes occupying the two sublattices. This system was
analyzed with a finite-size-scaling ansatz using Ising ex-
ponents. Good scaling curves were obtained and this

gave evidence that the antiferromagnetic DDSI model is
in the Ising universality class, which includes the antifer-
romagnetic DDS system and the Ising model with
quenched site disorder.
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